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Abstract In this paper, a new quaternion-based non-
linear robust output feedback tracking controller is
developed to address the attitude and altitude tracking
problem of a quadrotor unmanned aerial vehicle which
is subject to structural uncertainties and unknown exter-
nal disturbances. By using the unit quaternion repre-
sentation, the singularity associated with orientation
representations can be avoided. A set of non-model-
based filters are introduced to provide estimations for
the unmeasurable angular velocities and translational
velocity in the altitude direction of the quadrotor in
the case that velocity feedback is unavailable. Approx-
imation components based on neural network (NN)
are introduced to estimate the modeling uncertain-
ties, and robust feedback components are designed to
compensate for external disturbances and NN recon-
struction errors. The Lyapunov-based stability analy-
sis is employed to prove that a semiglobally asymptotic
tracking result is achieved and all the closed-loop states
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remain bounded. Numerical simulation results are pro-
vided to illustrate the good tracking performance of the
proposed control methodologies.
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1 Introduction

As a special micro helicopter, the quadrotor unmanned
aerial vehicle (UAV) has attracted great attention from
military and civil applications in recent years. Due to
its advantages such as vertical taking off and landing
(VTOL), rapid maneuvering, and precise hovering, the
potential for the quadrotor in applications as diverse as
fire fighting and environmental monitoring has been
well established [1]. Compared with the traditional
helicopter, the quadrotor is simpler, safer, and more
efficient. However, the quadrotor UAV suffers from var-
ious control complexities such as open-loop instability
and inherent nonlinearity within the dynamic model of
the system [2]. The design of high-performance nonlin-
ear control mechanisms for quadrotors in the presence
of structural uncertainties and unknown external dis-
turbances is still a challenging task.

Various control methods had been developed for
the quadrotors in recent years. These control strategies
could be divided into two main groups: linear control
design and nonlinear control design. For example, lin-
ear control techniques, such as proportional integral
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derivative (PID) and linear quadratic (LQ), were pro-
posed in [3]. In [4], the authors presented an inner- and
outer-loop PD controller for the outdoor flight control
of quadrotors. Experiments were performed, and the
flight test results showed that the proposed controller
was capable of achieving various missions, including
taking off, hovering, and landing. On-board vision sen-
sor and optical flow approach were utilized to get the
feedback of the quadrotor’s velocities. Similarly, a PID
control law was introduced in [5] for position stabi-
lization, and indoor flight experiment results were pre-
sented to validate the performance of the proposed
controller with the help of the VICON motion cap-
ture system to obtain measurement of the quadrotor’s
velocities.

When a large operation range is required, the lin-
ear controller’s performance may be degraded due to
the nonlinearities of the quadrotor. In [6], a hybrid
backstepping control method was employed for the
attitude control of a quadrotor. In order to address
the blade flapping problem, a function was introduced
that could quickly respond to abrupt angular velocity
changes. Flight experiments were performed to vali-
date the performance of the proposed controller based
on a DragonFlyer quadrotor helicopter. Nonlinear con-
trol techniques, such as dynamic inversion, feedback
linearization, and sliding mode control, were proposed
in [7]. Except nonlinearities, structural/unstructural
uncertainties and external disturbances also bring quite
a lot challenges to the flight control development for
quadrotors. Adaptive nonlinear control design would
be a suitable choice in the case of structural uncertain-
ties. An adaptive attitude controller was designed for
a quadrotor with unknown inertia matrix in [8], and it
could achieve asymptotic tracking of an attitude com-
mand when there was no disturbance in the attitude
dynamics. A nonlinear adaptive regulation controller
was proposed in [9] for a quadrotor with parametric
uncertainties, and an asymptotic regulation of posi-
tion and yaw commands was achieved. Dierks et al.
[10] proposed a model reference controller which com-
bined direct and indirect adaption approaches, and it
has shown good robustness for uncertainties that result
from the actuator’s failure. The sliding mode control
design approach has been widely utilized for the con-
trol of quadrotors under parametric uncertainties and
external disturbances [11–14]. For example, in [11], a
general sliding mode control was developed for a class
of uncertain underactuated system which was featured

as in the cascaded from, and then, the proposed method
was utilized to stabilize a quadrotor helicopter with
parametric uncertainties associated with its dynamic
model. In [12], a modified sliding mode quaternion
feedback controller was proposed for the tracking con-
trol of a quadrotor, and an observer was introduced
to estimate the time-varying disturbance which was
treated as an unknown state. It was proved that an
uniform ultimate bounded (UUB) tracking result was
achieved. An robust altitude control based on sliding
mode approach was designed for a quadrotor UAV with
uncertainties in the measurement of the pressure sensor
in [14], and the control performance was validated via
real-time experimental results. Other nonlinear robust
controllers have also been developed. In [15], a robust
integral of the sign of the error (RISE)-based attitude
controller was presented for quadrotors with uncer-
tain dynamics, and an semiglobally asymptotic trajec-
tory tracking was achieved. Liu et al. [16] combined a
PD controller with a robust compensator to formulate
a robust attitude control of uncertain quadrotors, and
ultimately bounded tracking result was proven. Bialy
et al. [17] developed a nonlinear robust adaptive for
a quadrotor with linear parameterized (LP) uncertain-
ties and bounded disturbances, semiglobally asymp-
totic tracking of a time-varying position trajectory and
yaw angle trajectory was proved via a Lyapunov-based
stability analysis. A nested saturation approach was
utilized to develop a quaternion-based feedback con-
trol for a class of rigid bodies in [18], and the input
bound constraints were considered in the control devel-
opment. A mini-quadrotor helicopter real-time testbed
was employed as the benchmark system to validate the
proposed design which had shown good robustness to
external disturbances in roll, pitch, and yaw motion.

One drawback of the above controllers is the need
of full-state measurements for the quadrotor. In the
case of velocity sensor failures, full access to system
states is impossible. Additionally, internal and external
noise often deteriorate the accuracy of on-board veloc-
ity sensors. This brings the problem of output feed-
back (OFB) control for quadrotors. From a theoreti-
cal point of view, the most difficulty for this problem
lies in the fact that, generally speaking, the separation
principle does not hold for nonlinear systems. Veloc-
ity observers or filters are often employed to provide
estimations for the unmeasurable velocity signals. Sun
et al. [19] proposed energy coupling output feedback
controller for a 4 degree of freedom (DOF) underactu-
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ated crane system, and kinematic energy shaping and
potential energy shaping approaches were combined
with a filter design to formulate the OFB design with
only position and swing angle feedback. Only a few
works have investigated the problem of OFB control
design for quadrotors. Sliding mode observers were
designed in [20] to provide estimation for the quadro-
tor’s unmeasurable velocity signals and unknown dis-
turbances, and backstepping methods were employed
to formulate the OFB controller. Direks and Jagan-
nathan [21] utilized two neural networks (NNs) as the
main part in the OFB control design for the quadro-
tor. One NN was used as the observer to estimate
the linear and angular velocities of the UAV, and the
other NN was used to learn the uncertain dynamics
of the quadrotor. The proposed design in [21] yielded
semiglobally uniformly ultimately bounded (SGUUB)
tracking of the desired position and attitude trajectories,
but it required knowledge of the mass and moments of
inertia. In [22], a model-based velocity observer was
designed to provide estimations for the unknown trans-
lational and angular velocities of the quadrotor, and a
SGUUB tracking result was obtained which was proved
by a Lyapunov-based stability analysis. The adaptive
observation method was employed in [23] to design a
translational velocity observer of a quadrotor by assum-
ing that the translational accelerations, attitude angles,
and angular velocities were available from the on-board
inertial measurement unit (IMU). In [24], a nonlinear
velocity observer was proposed to estimate the unavail-
able translation velocities of a quadrotor UAV with the
requirement of persistence of excitation (PE). Accel-
erations, attitude angles, and angular velocity signals
from the IMU were used as the inputs for the observer.
Model reference control and dynamic inversion method
were combined to formulate the OFB controller.

Based on the above literature review, it can be seen
that few works have investigated the output feedback
control problem for a quadrotor UAV with model-
ing uncertainties and being subject to external distur-
bances. Thus, there is great need to design the output
feedback control methodology which does not require
measurement of the quadrotor’s velocity. Meanwhile,
the output feedback control law should able to achieve
good robustness with respect to modeling uncertainties
and external disturbances. To improve the performance
of the quadrotor UAV control system, this paper pro-
poses a NN-based robust OFB control design with the
attitude angles and altitude of the UAV being selected

as the output states based on our previous work in
[25]. Since the three-parameter representations (e.g.,
Euler angles and Rodrigues parameters) exhibit singu-
lar orientations (i.e., the orientation Jacobian matrix
in the kinematic equation is singular for some ori-
entations), the attitude error system of the quadrotor
is constructed in terms of the unit quaternion. Non-
model-based velocity filters are designed to eliminate
the need for angular and altitudinal velocity measure-
ments. To increase the robustness of the proposed con-
trol design, NN-based approximation terms are pro-
posed to learn the unknown dynamics of the quadro-
tor UAV, such as parametric uncertainties, unknown
aerodynamic damping, and other unmodeled dynam-
ics. The NNs are updated online to provide adaptations
for the time-varying dynamics of the quadrotor. Then,
nonlinear robust components based on variable struc-
ture approach are designed to compensate time-varying
external disturbances and NN reconstruction errors.
Semiglobally asymptotic tracking of time-varying atti-
tude and altitude trajectories is proved through a com-
posite Lyapunov-based stability analysis. To the best
of our knowledge, the proposed method yields the first
asymptotic tracking OFB control design with quater-
nion representation for the quadrotor UAV.

This paper is organized as follows. The dynamic
model of a quadrotor is presented in Sect. 2. In Sect. 3,
the attitude controller is designed and the stability
analysis is provided. The altitude controller is devel-
oped and the corresponding stability analysis is pro-
posed in Sect. 4. A detailed numerical simulation result
is presented in Sect. 5. Finally, conclusions are included
in Sect. 6.

2 Dynamics of a quadrotor

Motivated by the need to obtain the dynamic and kine-
matic models of the quadrotor UAV, two right-hand
frames denoted by I and B are utilized. As illustrated
in Fig. 1, the origin of the orthogonal right-hand coor-
dinate system I is attached on the ground to represent
the inertial reference frame, which can be denoted by
I = {

xI yI z I
}

with zI being the vertical direction
upward into the sky, yI being the west direction, and
xI being determined by the right-hand rule. The frame
B = {

xB yB zB
}

represents a orthogonal right-hand
body-fixed coordinate system which is centered at the
center of the mass of the quadrotor. The body axis zB
is the normal axis of the principal plane of the quadro-
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Fig. 1 Quadrotor UAV
coordiante systems

tor directed from bottom to top, the body axis xB is
along with the forward flying direction of the quadro-
tor, and the direction of the body axis yB is determined
by the right-hand rule. The quadrotor considered in the
paper can be modeled via following differential equa-
tions [22]

J ω̇ = S(Jω)ω + N (ω) + τ + τd

mz̈ = −kz ż − mg + cos θ cos φu + dz (1)

where ω(t) ∈ R
3 denotes the angular velocity of

the UAV with respect to the frame I defined in the
B, z(t) ∈ R represents the altitude of the UAV, the
matrix J ∈ R

3×3 represents the positive definite iner-
tia matrix, m is a positive constant that denotes the
mass of the vehicle, the matrix S(·) represents a skew-
symmetric matrix, N (ω) ∈ R

3 represents the continu-
ous aerodynamic damping moment vector, kz is a pos-
itive constant that denotes the aerodynamic damping
coefficient in the altitude direction, g = 9.81 m/s2 is
the acceleration of gravity, τ(t) ∈ R

3 is the control
torque input, u (t) ∈ R denotes the thrust along the
zB-direction, τd(t) ∈ R

3 represents the external dis-
turbance moment vector, and dz(t) ∈ R denotes the
external disturbance force in the zI -direction, φ(t) and
θ(t) ∈ R represent the roll and pitch angles, respec-
tively. The vectors and matrices in (1) are explicitly
defined as

ω(t) = [ω1(t) ω2(t) ω3(t) ]T

τ(t) = [ τ1(t) τ2(t) τ3(t) ]T

τd(t) = [ τd1(t) τd2(t) τd3(t) ]T

J = diag([ J11(t) J22(t) J33(t) ]T

S(ξ) =
⎡

⎣
0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

⎤

⎦ ∀ξ = [ ξ1 ξ2 ξ3
]T

.

(2)

Assumption 1 The exogenous disturbances τd i (t) for
i = 1 . . . 3 and dz(t) in (1) are continuous differen-
tiable and bounded up to its second-order time deriva-
tive τd i (t), dz(t) ∈ C2, i.e., τd i (t), dz(t), τ̇d i (t), ḋz(t),
τ̈d i (t), d̈z(t) ∈ L∞.

Remark 1 The mass m, the inertial matrix J , the aero-
dynamic damping torque vector N (ω), the damping
coefficient kz , the disturbance moment vector τd(t),
and the disturbance force dz(t) are unknown for the
following control development.

3 Attitude tracking control design

3.1 Attitude representation via quaternion

According to the Euler’s theorem [26], any rota-
tion matrix can be uniquely represented by a rota-
tion angle ϕ(t) ∈ R about a suitable unit vector
k(t) ∈ R

3 [27] and [28]. Thus, utilizing the algo-
rithm provided in [27], the angle ϕ(t) and an unit
vector k(t) can be calculated for any given rotation
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matrix. Given (ϕ, k) ∈ R
4, an alternative parametriza-

tion of the attitude is provided by a unit quaternion

vector q(t) = [
qo(t) qT

v (t)
]T ∈ R

4 [26] and [28],
which can be utilized to describe the orientation of the
body-fixed frame B with respect to the inertial frame
I. Specifically, the unit quaternion provides a method
to describe the rigid body’s attitude without singu-
larity and is defined via the angle-axis parameters as

q(t) = [ cos( 1
2ϕ(t)) kT (t) sin( 1

2ϕ(t))
]T

. Note that the
unit quaternion is subject to the constraint qT q = 1.
It is important to mention that the rotation matrix from
the body-fixed frame B to the inertial frame I, which is
denoted by R(t) ∈ SO(3), can be calculated by using

the unit quaternion q(t) = [
qo(t) qT

v (t)
]T ∈ R

4 as
[26,29]

R(q) = (q2
o − qT

v qv)I3 + 2qvqT
v − 2qoS(qv). (3)

The unit quaternion q(t) can be related to angular
velocity ω(t) via the following differential equations
[29] as

q̇o = −1

2
qT
v ω q̇v = 1

2
(qo I3 + S(qv))ω (4)

where I3 denotes a 3×3 identity matrix. The expression
in (4) can be modified as

q̇ = 1

2
B(q)ω (5)

where the matrix B(q) = [
BT

o BT
v

]T ∈ R
4×3 with

Bo ∈ R
1×3 and Bv ∈ R

3×3 being defined as B0 = −qT
v

and Bv = qo I3 + S(qv), respectively.

3.2 Attitude control objective

The object of this part is to design the control torque
input τ(t) to ensure the attitude tracking of the quadro-
tor without the measurement of the angular velocity
vector ω(t). For this purpose, the desired attitude of
the quadrotor UAV is represented by a desired body-
fixed, orthogonal coordinate frame which is denoted
as Bd = {

xBd yBd zBd
}
. The corresponding rota-

tion matrix of the frame Bd with respect to the
inertial frame I is denoted by Rd ∈ SO(3). The
desired unit quaternion, which is defined as qd(t) =
[

qod(t) qT
vd(t)

]T ∈ R
4, is utilized to described the

orientation of Bd with respect to the inertial frame
I. The coordinate frame relationships are shown by
Fig. 1. The desired angular velocity, denoted by ωd(t),
is the angular velocity of the desired body frame

Bd with respect to the inertial frame I expressed in
Bd . The desired rotation matrix Rd(t) can be calcu-
lated by using the desired quaternion unit qd(t) as
follows

Rd(qd)=
(

q2
od −qT

vdqvd

)
I3+2qvdqT

vd − 2qod S(qvd).

(6)

The time derivative of qd(t) is related to the desired
angular velocity ωd(t) through the following kinematic
equation

q̇d = 1

2
Bd(qd)ωd (7)

where the matrix Bd(qd) = [
BT

od BT
vd

]T ∈ R
4×3

with Bod ∈ R
1×3 and Bvd ∈ R

3×3 being defined
as Bod = −qT

vd and Bvd = qod I3 + S(qvd), respec-
tively. To quantify the mismatch between the current
and desired orientation of the quadrotor, the quater-

nion tracking error, denoted by eq (t) = [ eo(t) eT
v (t)

]T

∈ R
4, is defined as follows

eo = qoqod + qT
v qvd

ev = qodqv − qoqvd + S(qv)qvd (8)

which also satisfies the constraint

eT
q eq = 1. (9)

The mismatch between the rotation matrix R(t) and
Rd(t) is defined as follows

R̃ = R RT
d

=
(

e2
o − eT

v ev

)
I3 + 2eveT

v − 2eoS(ev). (10)

By utilizing the rotation matrix R̃, the desired unit
quaternion qd(t) which describes the orientation of the
desired body-fixed frame Bd can be expressed in frame
B, and it can be computed via the following differential
equations

q̇od = −1

2
qT
vd R̃ωd

q̇vd = 1

2
(qod I3 + S(qvd))R̃ωd . (11)

The angular velocity of B with respect to Bd expressed
in B, denoted by ω̃ ∈ R

3, can be calculated from the
definition of R̃(t) as [27]

ω̃ = ω − R̃ωd . (12)

Based on the previous definitions, the quadrotor atti-
tude tracking objective can be stated as

lim
t→∞ ev(t) = 0. (13)
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From (8) and (10), it can be obtained that if lim
t→∞ ev(t) =

0 then lim
t→∞ R̃(t) = I3×3.

Remark 2 According to (7) and (11), the desired unit
quaternion qd(t) is bounded such that q(i)

d ∈ L∞, for

i = 0, 1, 2, 3. This ensures that ω(i)
d ∈ L∞, for i = 0,

1, 2.

3.3 Quaternion error dynamics

To design the attitude tracking control input τ(t), we
will take the time derivative of eq(t). Refer to [31], the
time derivative of eo(t) and ev(t) can be expressed as
follows

ėo = −1

2
eT
v ω̃ ėv = 1

2
(S(ev) + eo I3×3)ω̃ (14)

where the angular velocity ω̃(t) has been introduced in
(12). The relation between angular velocity ω̃(t) and
quaternion error eq(t) can be rewritten via the following
kinematic equation

ėq = 1

2
Be(eq)ω̃ (15)

where Be(eq) = [
BT

eo BT
ev

]T ∈ R
4×3 with Beo ∈

R
1×3 and Bev ∈ R

3×3 being defined as Beo = −eT
v

and Bev = eo I3 + S(ev), respectively. After taking the
time derivative of (12) and multiplying the resulting
equation with J , it can be obtained

J ω̃ = N (ω) + τ + τd + J
[

S(ω̃)R̃ωd − R̃ω̇d

]

− S(ω̃ + R̃ωd)J (ω̃ + R̃ωd) (16)

where (1), (12), and Remark 3 have been utilized. Based
on (15), it can be obtained that

ėv = 1

2
Bevω̃. (17)

To facilitate the development of the control input τ(t),
an auxiliary matrix, denoted by Jev(t) ∈ R

3×3, is
defined as

Jev = B−T
ev J B−1

ev . (18)

By taking the time derivative of (17), and multiplying
the resulting equation by Jev , the following equation
can be obtained

Jev ëv = 1

2
Jev Ḃevω̃ + 1

2
B−T

ev J
.

ω̃. (19)

After substituting (16) into (19), the following equation
can be obtained

Jev ëv+C∗ėv+N∗ = 1

2
B−T

vd τd + 1

2
B−T

vd N (ωd)+τeq

(20)

where the terms C∗(t) ∈ R
3×3, N∗(t) ∈ R

3 and
τeq(t) ∈ R

3 are defined as

C∗ = −Jev

(
d

dt
(B−1

ev )

)−1

B−1
ev − 2

(
B−1

ev

)T

S
(

J B−1
ev ėv

)
B−1

ev (21)

N∗ = −1

2
B−T

ev J
[

S(2B−1
ev ėv)R̃ωd − R̃ω̇d

]

+ 1

2
B−T

vd N (ωd) + 1

2
B−T

ev S(R̃ωd)J R̃ωd

+ B−T
ev S(R̃ωd)J B−1

ev ėv− 1

2
B−T

ev τd + 1

2
B−T

vd τd

− 1

2
B−T

ev N (ω) + (B−1
ev )T S(B−1

ev ėv)J R̃ωd (22)

τeq = 1

2
B−T

ev τ. (23)

Remark 3 Based on the definition of Bev , the determi-
nant of the Jacobian matrix Bev can be calculated as
follows

det(Bev) = det(eo I3 + S(ev))

= det

⎛

⎝

⎡

⎣
e0 0 0
0 e0 0
0 0 0

⎤

⎦+
⎡

⎣
0 −ev3 ev2

ev3 0 −ev1

−ev2 ev1 0

⎤

⎦

⎞

⎠

= e0(e
2
0 + e2

v1 + e2
v2 + e2

v3)

= e0 (24)

where (9) has been utilized. Based on the constraint in
(9), it can be obtained that

|e0| ≤ 1 ‖ev‖ ≤ 1 (25)

where ‖·‖ represents the standard Euclidean norm. It
can also easy to be obtained from (9) that

if lim
t→∞ ev = 0 then lim

t→∞ |e0| = 1. (26)

To guarantee that the inversion of the Jacobian matrix
Bev in (15) exists, we need to ensure that det(Bev) 	= 0
∀t ∈ [0,+∞). To make this constraint valid, we will
require that the initial condition for e0(t) be restricted
that e0(0) 	= 0, and the following control laws should
be designed to ensure that e0(0) 	= 0. From (8) and
(26), it is not difficult to see that the desired trajectory
can be initialized to ensure that e0(0) 	= 0.

123



www.manaraa.com

Nonlinear robust output feedback tracking control 2741

The subsequent properties of the dynamics in (20),
which can be approved by following the similar steps
in [30] and [31], will be employed in the subsequent
controller design and stability analysis.

Property 1 The matrices Jev(t) and C∗(t) satisfy the
following skew-symmetric property

ξ T
(

1

2
J̇ev − C∗

)
ξ = 0 ∀ξ ∈ R

3. (27)

Property 2 The matrix Jev(t) is symmetric and posi-
tive definite, and satisfies the following inequality

δ1 ‖ξ‖2 ≤ ξ T Jevξ ≤ δ2 ‖ξ‖2 ∀ξ ∈ R
3 (28)

where δ1 and δ2 are some positive constants.

3.4 OFB control development

In this part, the control torque input τ(t) is designed
under the restriction that the quadrotor’s angular veloc-
ity, ω(t) is not measurable, and the dynamic model of
(1) are uncertain as stated in Remark 1. The following
non-model-based filters are employed to provide esti-
mation for the unmeasurable angular velocity signals
[32]

ė f = −e f + r f r f = p − (k2 + 1)ev

ṗ = −r f − (k2 + 1)(ev + e f ) − e f + ev

(1 − eT
v ev)2

(29)

where e f (t), r f (t) ∈ R
3 are the outputs of the filters,

p(t) ∈ R
3 is an auxiliary variable used in the filter

implementation, k2 ∈ R is a positive filter gain, and
ev(t) is the measurable input of the filter and has been
defined in (8). The initial value of p(t) and e f (t) are set
to be p(0) = 0 and e f (0) = 0, respectively. The initial
value of r f is calculated via r f (0) = p(0) − (k2 +
1)ev(0), where ev(0) can be determined from (8).

To develop the error system for OFB controller, the
following auxiliary signal, denoted by η(t) ∈ R

3, is
defined as

η = ev + ėv + e f . (30)

By taking the time derivative of (29), the following
dynamics for r f (t) can be obtained

ṙ f = −r f − (k2 + 1)η − e f + ev

(1 − eT
v ev)2 . (31)

After taking the time derivative of (30), multiplying the
result equation by Jev , and substituting from (31) and

(30), the open-loop dynamics of η(t) can be obtained
as

Jevη̇=−C∗η − k2 Jevη+ 1

2
B−T

vd τd +Nev+nd +τeq

(32)

where the auxiliary function vector Nev(t) ∈ R
3 is

defined as

Nev = C∗(e f + ev) + Jev(η − ev + ev

(1 − eT
v ev)2 )

− 2Jeve f − N∗. (33)

The bounded uncertain function vector nd(t) ∈ R
3 in

(32) is defined as

nd = 1

2
B−T

vd N (ωd) + J ω̇d + 1

2
S(ωd)Jωd . (34)

It is not difficult to see that nd(t) ∈ L∞ from (34). By
taking the time derivative of (34), it can be obtained
that

ṅd = 1

2

(
∂ B−T

vd (qd)

∂qvd1
q̇vd1 + ∂ B−T

vd (qd)

∂qvd2
q̇vd2

+ ∂ B−T
vd (qd)

∂qvd3
q̇vd3 + ∂ B−T

d (qvd)

∂qod
q̇od

)

N (ωd)

+ 1

2
B−T

vd (qvd)

(
∂ N (ωd)

∂ωd1
ω̇d1 + ∂ N (ωd)

∂ωd2
ω̇d2

+ ∂ N (ωd)

∂ωd3
ω̇d3

)
+ J ω̇d + 1

2

(
∂S(ωd)

∂ωd1
ω̇d1

+ ∂S(ωd)

∂ωd2
ω̇d2 + ∂S(ωd)

∂ωd3
ω̇d3

)
Jωd

+ 1

2
S(ωd)J ω̇d , (35)

and thus, it is easy to see that ṅd(t) ∈ L∞ according to
Remark 2.

Here, we consider compensating for the uncer-
tain term nd(t) via NN-based approximation methods.
According to the universal approximation property of
NN, nd(t) can be approximated by a three-layer NN
such as

nd = W T σ(V T χ) + ε(χ) (36)

where χ represents the input of the NN which is defined

as χ = [
1 qT

d ωT
d ω̇T

d

]T ∈ R
10, W and V represent

the ideal weight matrices of the NN, σ(·) represents the
activation function, and ε(·) denotes the approximation
error. Since W and V can not be obtained, we proposed
the following dynamic NN design

n̂ = Ŵ T σ(V̄ T χ) (37)
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where n̂ represents the output of the NN which is
employed to provide an approximation of the unknown
part nd(t) in (32), Ŵ (t) ∈ R

10×3 represents the esti-
mation of the ideal weight matrix W, and V̄ ∈ R

11×10

is set to be a constant matrix to simplify the implemen-
tation of the NN. The activation function σ(·) in (39)
is chosen as σ(α) = 1

1+exp(α)
. The update law of Ŵ (t)

is designed as
˙̂W = −ε1Ŵ + T σ

(
V̄ T χ

)
sat
(
eT
v + ξ T

1

)

ξ1 = 1

ε2
(−ξ2 + ev) ξ̇2 = 1

ε2
(−ξ2 + ev) (38)

where ξ1(t), ξ2(t) ∈ R
3 are auxiliary signals, ε1, ε2 ∈

R are some positive gains, T ∈ R
10×10 is a diagonal

positive definite update gain matrix, and sat (·) ∈ R
1×3

represents a saturation function vector. From (38), it is

not difficult to show that W (t),
.

Ŵ (t) ∈ L∞, thus n̂(t),
˙̂n(t) ∈ L∞.

Based on the velocity filters proposed in (29) and
the open-loop error system in (32), the OFB controller
τeq(t) can be designed as

τeq = −K1sgn(ev + e f ) + (k2 + 1)r f

− n̂ − ev

(1 − eT
v ev)2 (39)

where K1 = diag(K11, K12, K13) ∈ R
3×3 is a con-

stant, diagonal, positive definite gain matrix, and the
function sgn(•) vector is defined as

sgn(ξ) = [ sgn(ξ1) sgn(ξ2) sgn(ξ3)
]T

(40)

∀ξ = [ ξ1 ξ2 ξ3
]T

. The actual control torque input τ(t)
can be calculated via (23). After substitution (39) into
(32), the following closed-loop system can be obtained

Jevη̇ = −C∗η − k2 Jevη + τ̄d + Nev + (k2 + 1)r f

− K1sgn(ev + e f ) − ev

(1 − eT
v ev)2 (41)

where the auxiliary function vector τ̄d(t) ∈ R
3 is

defined as

τ̄d = ñ + 1

2
B−T

d τd (42)

with ñ = nd − n̂ representing the reconstruction error
of the NN. Based on the fact that nd(t), ṅd(t), n̂(t), ˙̂n(t)
∈ L∞, the definition of Bd , Remark 1, and Remark 2,
it is not difficult to prove that τ̄d(t), d

dt (τ̄d(t)) ∈ L∞.

Remark 4 Based on Remark 1, the fact that the rotation
matrixes R(t), Rd(t), and R̃(t) are bounded, and the
structure of (29) and (33), it can be shown that [31]

‖Nev‖ ≤ ρ
(∥∥zq

∥
∥)
∥
∥zq
∥
∥ (43)

where zq(t) ∈ R
9 is defined as

zq =
[

eT
f ηT eT

v√
1−eT

v ev

]T

(44)

with the positive functionρ(
∥
∥zq
∥
∥)being non-decreasing

in
∥
∥zq
∥
∥.

Comparing with our previous work in [25], the major
improvements in this paper are listed as follows:

(1) A neural network (NN)-based feedforward com-
ponent is introduced in the control design to compen-
sate for the system’s uncertainties which do not satisfied
the linear-in-parameters (LP) property. In addition, this
NN-based feedforward component can help to reduce
the chattering issue caused by the sgn(·) function in the
control input in (39). The stability with the NN-based
control input is also proved in the subsequent section.

(2) A detailed numerical simulation is performed
to validate the effectiveness and the robustness of the
proposed control methodology.

3.5 Stability analysis of attitude dynamics

Before presenting the main result of this part, a lemma
that will be invoked later is stated firstly.

Lemma 1 Let the auxiliary function L1(t) ∈ R be
defined as

L1 = ηT (τ̄d − K1sgn(ev + e f )). (45)

If the control gain matrix K1 introduced in (39) is
selected to satisfy the following sufficient condition

K1i > ‖τ̄d(t)‖∞ +
∥
∥
∥
∥

d

d(t)
(τ̄d(t))

∥
∥
∥
∥∞

for i = 1, 2, 3

(46)

where ‖•‖∞ denotes the infinity norm, then
∫ t

0
L1(τ )dτ ≤ ζb (47)

with the positive constant ζb being defined as

ζb =
3∑

i=1

K1i |evi (0)| − eT
v (0)τ̄d(0). (48)

Proof Please see the “Appendix”.

Now, the main stability result of the OFB tracking
controller proposed in (39) is stated by the following
theorem.
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Theorem 1 The control law proposed in (39) ensures
that all the closed-loop signals under the closed-loop
attitude operation are bounded, and the attitude track-
ing error is regulated in the sense that

ev(t) → 0 as t → ∞ (49)

provided that K1 is selected to satisfy (46), and k2 is
selected sufficient large relative to the system initial
conditions.

Proof Let the auxiliary function Q(t) ∈ R be defined
as

Q = ζb −
∫ t

0
L(s)ds (50)

where the ζb and L(t) have been introduced in Lemma
1. It is not difficult to show that Q ≥ 0 based on Lemma
1. To prove the above theorem, an nonnegative function
V1(t) ∈ R is defined as

V1 = 1

2
ηT Jevη + 1

2
eT

f e f + 1

2

eT
v ev

(1 − eT
v ev)2 + Q. (51)

Note that the function V1(t) can be bounded as

λ1 ‖y‖2 ≤ V1 ≤ λ2 ‖y‖2 (52)

where y = [ zT
q

√
Q
]T ∈ R

10 with zq being defined in
(44). After taking the time derivative of (51), and sub-
stituting (29), (41) together with (50) into the resulting
equation, the following expression can be obtained

V̇1 = −eT
f e f − eT

v ev

(1 − eT
v ev)2 − k2η

T Jevη + ηT Nev

= − ∥∥zq
∥
∥2 + ηT η − k2η

T Jevη + ηT Nev (53)

upon the use of the definition of zq(t). After applying
(28) and (43) to (53), it can be obtained that

V̇1 ≤ − ∥∥zq
∥
∥2 +

[
‖η‖ ∥∥zq

∥
∥
∥
∥ρ(
∥
∥zq
∥
∥)
∥
∥− kn ‖η‖2

]

≤ −
(

1 − ρ2(
∥
∥zq
∥
∥)

4kn

)
∥
∥zq
∥
∥2 (54)

where the constant kn satisfies the following inequality

kn < k2δ1 − 1. (55)

Based on (55), we can obtain that

k2 >
1

δ1
(kn + 1). (56)

From (54), it can be stated that

V̇1 ≤ −γ
∥
∥zq
∥
∥2 for kn >

1

4
ρ2 (∥∥zq

∥
∥) (57)

where γ is some positive constant. For the considera-
tion of subsequent stability analysis, let the auxiliary
functions W1(y), W2(y), W3(y) ∈ R be defined as

W1(y) = λ1 ‖y‖2 W2(y) = λ2 ‖y‖2 W3(y) = γ
∥
∥zq
∥
∥2

(58)

where λ1 and λ2 are defined as

λ1 = 1

2
min(1, δ1) λ2 = max

(
1

2
δ2, 1

)
(59)

with the positive constants δ1 and δ2 being defined in
(28). From (52) and (57), it can be concluded that

W1(y) ≤ V1 ≤ W2(y) V̇1 ≤ −W3(y). (60)

The inequality in (57) can be utilized to define the
region D as

D =
{

y ∈ R
10, ‖y‖ ≤ ρ−1(2

√
kn)
}

. (61)

From (51) (57), we know that V1(t) ∈ L∞; hence η(t),
e f (t), ev(t), r f (t) ∈ L∞. From (41) and (30), it can
be proved that ėv(t), η̇(t) ∈ L∞. Now, (29) can be
utilized to prove that ė f (t) ∈ L∞. Based on the pre-
vious boundedness analysis, it can be concluded that
Ẇ3(y) ∈ L∞ which is a sufficient condition for W3(y)

to be uniformly continuous. Let the region F being
defined as

F =
{

y ∈ D, W2(y) < λ1(ρ
−1(2

√
kn))

2
}

. (62)

By invoking Theorem 8.4 in [33], it can be proved that
γ
∥
∥zq
∥
∥2 → 0, as t → ∞ ∀y(0) ∈ F . The region

in (62) can be made large enough by increasing the
constant kn , i.e., a semiglobal result [34]. Utilizing (58)
and (62), the region of attraction can be calculated as

W2(y(0)) < λ1

(
ρ−1(2

√
kn)
)2

(63)

The inequality in (63) can be rewritten as

kn >
1

4
ρ2

(√
λ2

λ1
‖y(0)‖

)

. (64)

Finally, by utilizing (43), (48), definition of y(t) and
Q(t), and the initial values of p(t) and e f (t), an explicit
expression for ‖y(0)‖ can be calculated as
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‖y(0)‖ =
√√
√
√
∥
∥
∥
∥

ev(0)

(1 − eT
v (0)ev(0))2

∥
∥
∥
∥+ ‖η(0)‖ +

3∑

i=1

K1i |evi (0)| − 1

2
eT
v (0)B−T

d τ̄d(0). (65)

4 Altitude tracking control design

4.1 Altitude error system

To facilitate the OFB control development of the thrust
input u(t), the dynamics of altitude motion in (1) can
be reorganized as

mz̈ = −kz ż − mg + ueq + dz (66)

where the auxiliary function ueq(t) ∈ R is defined as

ueq = (cos θ cos φ)u. (67)

The Euler angles can be computed from the quaternion
unit q(t) via

θ = arcsin(2(q0q2 − q1q3))

φ =
(

arctan
2(q0q1 + q2q3)

1 − 2(q2
1 + q2

2 )

)

. (68)

The altitude tracking error, denoted by ez(t) ∈ R, is
defined as

ez = zd − z (69)

where zd(t) ∈ R represents the reference trajectory
for the quadrotor in z-direction. The control objec-
tive in this part is to design thrust input u(t) such that
ez(t) → 0 as t → ∞, under the restriction that the
velocity signal ż(t) is not measurable. Inspired by [32],
we propose the following non-model-based filters to
provide the unmeasurable translational velocity in z-
direction

ė f z = −e f z + r f z r f z = pz − (k2z + 1)ez

ṗz = −r f z − (k2z + 1)(ez + r f z) + ez − e f z (70)

where e f z(t), r f z(t) ∈ R are the outputs of the fil-
ters, pz(t) ∈ R is an auxiliary variable used in the
filter implementation, and k2z ∈ R is a positive con-
stant. The initial value for e f z(t) and pz(t) are set as
e f z(0) = 0 and pz(0) = (k2z + 1)ez(0), respectively.
The only input signal for the velocity filter in (70) is the
measurable signal ez(t). An auxiliary term, denoted by
ηz(t) ∈ R, is defined as follows

ηz = ėz + ez + r f z . (71)

After taking the time derivative of the second equa-
tion in (70), it can be obtained that

ṙ f z = −r f z − (k2z + 1)ηz + ez − e f z . (72)

After taking the time derivative of (71), and substitut-
ing the first equation in (70) together with (72) into
the resulting equation, the following expression can be
obtained

η̇z = z̈d − z̈ − 2r f z − e f z − k2zηz . (73)

After multiplying (73) by m and substituting (66) into
the resulting equation, we have

mη̇z = −k2zmηz + Nz − m(2r f z + e f z) − ueq (74)

where Nz(t) ∈ R is an auxiliary term defined as

Nz = kz ż + mg + mz̈d − dz . (75)

Let the auxiliary function Nzd(t) ∈ R be defined as
Nzd(t) = Nz(zd(t), żd(t)). It can be shown that Nzd(t)
and Ṅzd(t) ∈ L∞ by using the fact that zd(t) and
żd(t) ∈ L∞. The expression in (74) can be rewritten as

mη̇z = −k2zmηz + Nzd + Ñz − ueq (76)

where the auxiliary function Ñz(t) ∈ R is defined as

Ñz = Nz − Nzd − m(2r f z + e f z). (77)

Remark 5 Based on the definitions of Nz(t) and Nzd(t),
we can show that Ñz(t) can be upper bounded by the
following inequality [31]
∥
∥
∥Ñz

∥
∥
∥ ≤ ρz(‖zh‖) ‖zh‖ (78)

where zh = [
ez e f z r f z ηz

]T ∈ R
4, and the positive

function ρz(‖zh‖) is non-decreasing in ‖zh‖.

4.2 OFB control development

To achieve the control objective for the altitude direc-
tion, the following OFB control ueq(t) ∈ R is proposed

ueq = k1zsgn(ez + e f z) − (k2z + 1)r f z + ez (79)

where k1z and k2z are some positive control gains, and
sgn(•) is a standard sign function. The actual thrust
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input u(t) can be computed via (67). After substituting
(79) into (76), the following closed-loop dynamic error
system can be obtained

mη̇z = −k2zmηz − k1zsgn(ez + e f z)

+ Ñz + Nzd + (k2z + 1)r f z − ez . (80)

4.3 Stability analysis of altitude dynamics

Before presenting the main result of this part, the fol-
lowing lemma which will be invoked later is stated
firstly.

Lemma 2 Let the auxiliary function L2(t) ∈ R be
defined as

L2 = ηz(Nzd − k1zsgn(ez + e f z)). (81)

If the control gain k1z ∈ R is selected to satisfy the
following sufficient condition

k1z > ‖Ndz(t)‖∞ + ∥∥Ṅdz(t)
∥
∥∞ (82)

where ‖•‖∞ denotes the infinity norm, then
∫ t

∞
L2(s)ds ≤ ζbz (83)

where the positive constants ζbz ∈ R is defined as

ζbz = k1z |ez(0)| − ez(0)Nzd(0). (84)

Proof The proof can be accomplished by following the
similar steps in [32].

Theorem 2 The control law in (79) ensures that all
closed-loop signals under closed-loop altitude oper-
ation are bounded, and the altitude tracking error is
regulated in the sense that

ez(t) → 0 as t → ∞ (85)

provided that the control gain k1z satisfies (82), and k2z

is selected sufficient large relative to the system initial
conditions.

Proof Please see the Appendix.

5 Simulation results

In this section, a numerical simulation is presented to
validate the performance of the proposed OFB control
design. The inertial matrix of the quadrotor UAV is with
the following value

J = diag(1.25, 1.25, 2.5)kg m2, (86)

the mass of the quadrotor UAV is with the value of
m = 2 kg, and the aerodynamic damping coefficient
is with the value of kz = 0.01 Ns/m. The nonlinear
aerodynamic damping moment N (ω) in (1) is

N (ω)=
⎡

⎣
g1 + g2 |ω1| 0 0

0 g3 + g4 |ω1| 0
0 0 g5 + g6 |ω1|

⎤

⎦ω

(87)

where the coefficient is with the value of gi =
0.065 Nms/rad for i = 1 . . . 6. The initial value of
quadrotor’s attitude states are set to be

q0(0) = 0.9486 qv(0) = [0.1826 0.1826 0.1826
]T

.

(88)

To test the robustness of the proposed control design,
the initial value of the quadrotor’s altitude is set to be
z(0) = 0.6 m. The desired attitude trajectory is selected
to be a smooth rotation with the corresponding desired
angular velocity denoted as follows

ωd = [0.3 cos(t) 0.3 cos(t) 0.3 cos(t)
]T

rad/s. (89)

The desired altitude trajectory zd(t) is set as follows

zd (t) =
⎧
⎨

⎩

− A1
2

(
cos π t

Tr
+ 1
)

t < Tr

A2
2

(
cos
(

2π
ωr

(t − Tr )
)

− 1
)

+ A1 t ≥ Tr

(90)

where A1 = 2, A2 = 0.5, Tr = 8 s, and ωr = 3π rad/s.
The desired quaternion is related to the desired angular
velocity of (89) through the kinematic equation (11)
with the following initial values

qod(0) = 1 qvd(0) = [0 0 0
]T . (91)

The external disturbance are selected as
τd1 = τd2 = τd3 = 0.2 sin(t) Nm

dz = 4 sin(t) N
. (92)

The gains for the filter, NN, and controller are tuned
by a trial-and-error methodology until a good tracking
performance is achieved. This leads to the following
values for the gains

K1 = diag( 5 5 5 ) k2 = 20 k1z = 3 k2z = 15
T = diag

{
100 100 100 50 50 50 50 50 20 50

}

ε1 = 10 ε2 = 10 .

(93)

The thrust force of the four rotors fi (t) for i = 1, . . . ,

	 4 can be calculated via

u = f1+ f2+ f3+ f4 τ1 = l(− f1 − f2 + f3 + f4)

τ2 = l(−f1+ f2+ f3− f4) τ3 =c(−f1+ f2+ f3− f4)

(94)
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Fig. 2 Attitude tracking
error eq (t)
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Fig. 3 Desired altitude
trajectory zd (t), actual
altitude trajectory z(t), and
altitude tracking error ez(t)
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Fig. 4 Attitude of the
quadrotor UAV
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Fig. 5 Angular velocity
ω(t)
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Fig. 6 Control inputs τ(t)
and u(t)
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Fig. 7 Thrusts fi (t),
i = 1, 2, 3, 4
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Fig. 8 Outputs of the
neural network n̂(t)
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where l = 0.2 m denotes the distance between the
epicenter of the quadrotor and the rotor axes, and
c = 0.25 ∈ R denotes a constant force-to-moment
coefficient.

The numerical simulation results are presented in
Figs. 2, 3, 4, 5, 6, 7, and 8. Figure 2 displays the quater-
nion tracking error vector eq(t) = [ e0(t) ev(t) ]T . The
error signal e0(t) is observed to converge to 0 in <1 s,

and the error signal vector ev(t) = [
ev1 ev2 ev3

]T

is observed to converge to
[

0 0 0
]T

in <10 s. As the
result of Theorem 1 suggested, this means that the atti-
tude tracking objective has been achieved. From Fig. 3,
it can be seen that the altitude tracking error ez(t) con-
verges to 0 in <1 s. This means that the altitude track-
ing objective has been achieved. Figure 4 displays the

quaternion vector q(t) = [
q0(t) qv(t)

]T
which rep-

resents the attitude variation of the quadrotor during
the simulation. It can be seen that q0(t) and qv(t) go
to stable in <5 s. Figure 5 displays the variation of the

angular velocity vector ω(t) = [ω1(t) ω2(t) ω3(t)
]T

of the quadrotor. It is observed that the maximum angu-
lar velocity is about 18◦/s, and this means the quadrotor
has a reasonable angular velocity during the simulation.
The control inputs τ(t) and u(t) are illustrated in Fig. 6.
It is observed that τ1(t), τ2(t), and τ3(t) have a stable

value <1 Nm, and u(t) has a stable value <26 N; thus,
the control inputs stay with some reasonable values.
The thrust force fi (t) for i = 1, . . . , 4 is illustrated
in Fig. 7, and it can be seen that the maximum value
for these thrust force is <11 N, which is reasonable for
a quadrotor UAV. The outputs of the NN are shown in
Fig. 8, and they are always stable during the simulation.

6 Conclusions

In this paper, a nonlinear robust OFB tracking con-
troller is developed for the flight control of a quadrotor
UAV under structural uncertainties and unknown exter-
nal disturbances. By using non-model-based velocity
filter design methods, the controller does not require
measurements of the angular velocities and transla-
tional velocity in the altitude direction. A quaternion
representation is used to design a globally non-singular
attitude tracking controller. The NN-based approxi-
mation approach is combined with robust compen-
sator to formulate the nonlinear OFB tracking con-
troller. Through a Lyapunov-based stability analysis,
we have demonstrated that a semiglobal asymptotic
attitude and altitude tracking is achieved, and all closed-
loop signals remain bounded. Numerical simulation
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has been performed to confirm the effectiveness of
the proposed algorithm. Therefore, the contribution
of this paper lies in the following: (1) Velocity fil-
ters which require less knowledge of the quadrotor’s
dynamic model are designed to provide estimations
for the unmeasurable angular and altitudinal veloci-
ties; (2) A unit quaternion formulation is used to repre-
sent the attitude tracking error of the quadrotor which
allows the design of a nonsingular robust attitude con-
troller; (3) NN-based approximation terms are devel-
oped to learn the unknown dynamics on line which
can release the linearized parametric (LP) assumption
of the parametric uncertainties in the existing adaptive
and robust control design methods; and (4) A nonlin-
ear robust OFB control is developed which can achieve
semiglobally asymptotic tracking under uncertainties
and disturbances. In the future, we will validate the
OFB control design on a real-time quadrotor flight
testbed.
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Appendix

Proof of Lemma 1

Based on (29) and (30), the auxiliary signal η(t) can be
rewritten as

η = μ̇ + μ (95)

where μ = ev + e f . After substituting (95) into (47),
it can be obtained that
∫ t

0
L1(s)ds =

∫ t

0
μT (τ̄d − K1sgn(s))ds

+
∫ t

0
μ̇T τ̄dds −

∫ t

0
μ̇T K1sgn(s)ds.

(96)

After integrating the second and third integrals in (96)
by parts, it can be obtained that
∫ t

0
L1(s)ds =

∫ t

0

(
μT τ̄d − d τ̄d

ds
− K1sgn(μ)

)
ds

+μT τ̄d − μT (0)τ̄d(0) −
3∑

i=1

K1i |μi |

+
3∑

i=1

K1i |evi (0)| . (97)

The right side of (97) can be upper bounded by
∫ t

0
L1(s)ds ≤

∫ t

0

3∑

i=1

|μi |
(

|τ̄di | +
∣
∣
∣
∣
d τ̄di

ds

∣
∣
∣
∣− K1i

)
ds

+
3∑

i=1

|μi | (|τ̄di | − K1i )

+
3∑

i=1

K1i |evi (0)| − μT (0)D′
1(0). (98)

If the control gain matrix K1 satisfies the condition in
(46), the result in Lemma 1 can be proved. ��

Proof of Theorem 2

Let the auxiliary function Qz(t) ∈ R be defined as
follows

Qz = ζbz −
∫ t

0
Lz(s)ds (99)

where the ζbz and Lz(t) have been introduced in
Lemma 2. To prove the above theorem, an nonnega-
tive function Vz(t) ∈ R is defined as follows

V2 = 1

2
mη2

z + 1

2
eT

f z + 1

2
e2

z + 1

2
r2

f z + Qz . (100)

Note that the function Vz(t) can be bounded as

λ3 ‖yz‖2 ≤ V2 ≤ λ4 ‖yz‖2 (101)

where yz = [
zT

h

√
Qz
]T ∈ R

5, and λ3, λ4 ∈ R are
defined as

λ3 = 1
2 min(1, m) λ4 = max( 1

2 m, 1) . (102)

After taking the time derivative of (100), and substi-
tuting (70), (71), (72), (80), and (99) into the resulting
equation, the following expression can be obtained

V̇2 = −e2
f z − e2

z − r2
f z − k2zmη2

z + ηz Ñz

= −‖zz‖2 + (1 − k2zm)η2
z + ηz Ñz (103)

upon the use of the definition of zh(t). After applying
(78) to (103), it can be obtained

V̇2 ≤ −‖zz‖2 +
[
‖ηz‖ ρz(‖zz‖) − knz ‖ηz‖2

]

≤ −
(

1 − ρ2
z (‖zh‖)
4knz

)

‖zz‖2 (104)

123



www.manaraa.com

Nonlinear robust output feedback tracking control 2751

where knz ∈ R is a constant and satisfies the following
inequality

knz < k2zm − 1. (105)

The inequality in (105) implies that

k2z >
1

m
(knz + 1). (106)

From (104), it can be obtained that

V̇2 ≤ −γz ‖zz‖2 for knz >
1

4
ρ2

z (‖zz‖) (107)

where γz is some positive constant. The attract region
G can be determined similarly as the one in Theorem
1. It should be noted that even though the selection of
knz in (107) is related with the state zz(t), but it can be
transfer to the following sufficient condition

knz >
1

4
ρ2

z

(√
λ1z

λ2z
‖yz(0)‖

)

(108)

and the initial value |yz(0)| is set as

|yz(0)|=
√∣
∣e2

z (0)
∣
∣+∣∣η2

z (0)
∣
∣+k1z |ez(0)|−ez(0)Nzd(0).

(109)

The condition in (108) which is only dependent on
the system’s initial value can be obtained by follow-
ing the similar steps in the proof of Theorem 1. By
utilizing (107) and following the similar steps in the
proof of Theorem 1, it can be proved that all the closed-
loop signals remain bounded and the attitude tracking
is achieved, provided the control gains being selected
to satisfy (84), (106), (108), and (102). �
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